# **Examining the Efficacy of Combining Cognitive Training and Non-Invasive** Brain Stimulation: A Transdiagnostic Systematic Review and Meta-Analysis

# Anika Poppe<sup>1,2</sup>, Franziska D.E. Ritter<sup>3</sup>, Leonie Bais<sup>2</sup>, James Pustejovsky<sup>4</sup>, Marie-José van Tol<sup>5</sup>, Branislava Ćurčić-Blake<sup>5</sup>, Marieke Pijnenborg<sup>1,6</sup> & Lisette van der Meer<sup>1,2</sup>

<sup>1</sup>Department of Clinical and Developmental Neuropsychology, University of Groningen, The Netherlands <sup>2</sup>Department of Rehabilitation, Lentis Psychiatric Institute, Zuidlaren, The Netherlands <sup>3</sup>Department of Neuropsychology, Neurological Rehabilitation Center Godeshöhe, Germany <sup>4</sup>Educational Psychology Department, University of Wisconsin-Madison, USA <sup>5</sup>Department of BSCS, University Medical Center Groningen, The Netherlands <sup>6</sup>Department of Psychotic Disorders, GGZ Drenthe, the Netherlands

#### Introduction

Cognitive impairments are related to impaired everyday functioning across disorders. Cognitive training (CT) can help overcome these impairments. Non-invasive brain stimulation (NIBS) may increase the learning potential during CT by facilitating long-term potentiation.



**Objective:** To investigate whether combining CT with NIBS is more effective in improving cognitive, clinical and functional outcomes compared to CT on its own.

**Commonly used NIBS:** Transcranial electrical current stimulation (tES)

tES combined with computerized cognitive training

#### Search

- Electronic databases (PubMed, PsycINFO, MEDLINE, Web of Science)
- Grey literature (registries, mails to authors, dissertations)

#### **Inclusion Criteria**

- Randomized controlled trial in clinical or healthy populations
- Comparing [CT + NIBS vs. CT only] or [CT + NIBS vs. CT + Sham NIBS]

### **Statistical Analysis**

- Random-effects meta-analysis with robust variance estimation
- Moderator analysis (participant characteristics, characteristics of cognitive training, intervention design)
- Sensitivity analyses (impact of methodological choices, risk of bias, publication bias)

#### **Moderator analysis**

• No significant moderators

#### **Risk of bias** (per study)

| Domain              | L  | UC | Н |
|---------------------|----|----|---|
| Sequence generation | 21 | 38 | 3 |



## Method

#### **Post-training effects** (62 studies, 651 outcome measures)

• **Clinical populations** (27 studies): Schizophrenia, mild cognitive impairment, Alzheimer's disease, HIV+, MS, Parkinson's disease, fibromyalgia, morbid obesity, ADHD, substance-use disorder

| Forest plo | t: Meta-analy | ysis pre- t | to post-training | g effects |
|------------|---------------|-------------|------------------|-----------|
|            |               |             |                  |           |

g

Outcome domain k (n)

| Results |
|---------|

|                    |          |       |      |      | Hedge    | es' g [95 | % CI]    |     |     |
|--------------------|----------|-------|------|------|----------|-----------|----------|-----|-----|
|                    |          |       | -0.6 | -0.4 | -0.2     | 0         | 0.2      | 0.4 | 0.6 |
|                    |          |       |      |      |          |           | 1        |     |     |
| Functional Outcome | 9 (14)   | -0.17 |      | F    | -        |           |          |     |     |
| Clinical Outcome   | 18 (63)  | -0.02 |      |      | $\vdash$ |           | 4        |     |     |
| Perceptual Motor   | 12 (23)  | 0.03  |      |      |          |           |          |     | -   |
| Complex Attention  | 39 (120) | 0.07  |      |      |          |           |          |     |     |
| Executive Function | 40 (182) | 0.08  |      |      |          |           | $\vdash$ |     |     |
| Language           | 12 (21)  | 0.11  |      |      |          | -         |          |     |     |
| Working Memory     | 36 (156) | 0.14  |      |      |          | ⊢         |          |     |     |
| Learning/ Memory   | 29 (121) | 0.14  |      |      |          |           |          |     |     |
| Global Cognition   | 16 (28)  | 0.24  |      |      |          |           | <b>-</b> |     |     |

| Allocation concealment                          | 7  | 47 | 8 |  |  |
|-------------------------------------------------|----|----|---|--|--|
| Baseline differences                            | 57 | 2  | 3 |  |  |
| Missing data                                    | 28 | 34 | 0 |  |  |
| Selective reporting                             | 56 | 4  | 2 |  |  |
| <b>Note.</b> $L = low$ , UC = unclear, H = high |    |    |   |  |  |

• Excluding studies at high risk of bias did not change the results

#### **Follow-up effects**

(22 studies, 223 outcome measures)

- Working memory (g = 0.28, 95% Cl 0.14-0.42)
- Other domains not statistically distinct from zero

**Note.** The forest plot shows the standardized mean effect size from pre- to post-training for each domain. A larger effect size is in favor of CT + NIBS over CT + sham NIBS or CT only. (k = number of studies, n = number of outcome measures, g = Hedges' g)

Combining NIBS and CT can lead to additional improvements in

**Recommendations for Future Research** 

**Assess clinical relevance of the treatment combination by:** 



cognitive functioning compared to CT only or CT combined with sham NIBS

Additional improvements were not found for clinical outcomes and everyday functioning.

1) designing cognitive training focusing on improving everyday functioning (e.g., add strategies, generalization procedures and a trained therapist)

2) adding functional outcome measures

3) assessing long-term effects and

4) using validated cognitive outcome measures

